Applied EH&S Topics

H. Scott Matthews

Research Director, Green Design Institute

Assistant Professor, Civil and Environmental Engineering / Engineering and Public Policy

Accounting 'Perspectives'

- Most common corporate level
 - Probably familiar with 'your' system
 - Financial / cost accounting helps track income and expenses to their sources
- Also: national / regional level
 - Example: Gross Domestic Product (GDP)
 - Value of all final products made in US
- National accounting -> insight social welfare
 - Aids the consideration of social effects
 - Example: GDP per capita -> 'standard of living'

Shortcomings of Accounting Systems

- Tell us exactly (but <u>only</u>) what we ask them to do
- Example: national accounts track output
 - If we care about resources, environment, etc. they tell us nothing because we don't ask!
 - What's worse : the more resources we use (fossil fuels), the more we 'spend' to use them, the higher GDP is
- A corporate accounting system likely does not show expected value of 'contingent liabilities'¹
 - e.g., from hazardous waste site cleanup
 - Thus if we continue to store waste/etc on-site without accounting for the future costs, we show higher profits

¹May be included as a footnote to financial statements, without cost

Other Issues

- There are some other, hidden, nonenvironmental 'costs' missing
 - Employee satisfaction, illnesses, resource depletion, deforestation, land use, ...
- A comprehensive system of accounting would include consideration of these

Could consider 'value' of ecological services

 Note: economists have worked on this, but in general we see little tangible change

Cost Classification

- Systems do a good job of classifying materials, labor, etc.
- Some costs are hard to classify
 - E.g. administration, environment, H&S, ...
 - Lumped into 'overhead' accounts and are treated as a cost center
 - Costs that are not understood can't be managed
- If better classified, costs could be connected with the activities causing them
 - E.g., disposal cost linked to process making waste

Similar Concept: Activity-Based Costing (ABC)

- Conceived by former dean (Kaplan)
- Management accounting mechanism to allocate costs by activities that cause them instead of traditional labor-based methods
- Results in improved costing accuracy
 - Companies that use ABC are not limited to a single driver when allocating costs to products and activities.
 - Consumption ratios often differ greatly among activities. No single cost driver will accurately assign costs for all activities.

ABC Steps

- Identify Activities usually indirect costs
- Find costs of resources for activities
- Link activities to costs with drivers
- Find cost driver rates for activities
- Allocate costs to products based on activity

ABC Example - Photo Supply

•		Budgeted		Bud	geted
•	Activity Cost Pool	Overhead Cost	Activity Meas	ure Activit	ty Measure
•	Machine Setups	\$200,000	# of setups	10	0 Material
	Handling 1	.00,000 lbs	s. of DM	50,000 Ha	azardous waste
	control 50,000	lbs. of waste	10,000	ź	
•	Quality control	75,000	# of inspec	tions	1,000 <u>Other</u>
	OH costs	200, 000 M	achine Hours	20,000	
•	Total	\$625,000			
•	1,000 boxes of film	n development ch	emicals requires:		
•	Machine setups	4 setups			

- DM
- Hazardous waste
- Inspections

2,000 lbs. 10 inspections

500 MH

10,000 lbs.

Machine Hours

Questions

- What Would Fixed Overhead Allocation Be If Done Exclusively Based On MH?
- Using ABC:
- What Are Activity Rates?
- What Is Total Overhead Cost?

Cost Terminology

- Private standard representation "price"
 - » e.g. labor, materials
- Social value of externalities, damage
 - » e.g. pollution, worker health & safety, depletion
- Environmental may be subsets of above
 - » E.g. compliance, waste cleanup, disposal, etc.
- Full ALL COSTS added together
- Full Cost Accounting is "good" Cost Acct.
 An attempt to determine 'true costs'

FCA Goals and Objectives

- Represent complete costs of production
- Analyze flows of resources
- Environmental: understand impacts
- "Tag" or "cost" environmental impacts
- Management: minimize 'full costs'
 - i.e., minimize creation of waste to lower disposal costs - has financial/environmental benefit

Traditional Accounting System

Source: EPA, "Introduction to Env. Acct. as Bus. Mgmt. Tool, Key Concepts and Terms"

Traditional Accounting System

Environmental costs of B put into overhead, allocated to both products (product A subsidizes product B)

FCA at National Level

- Efforts by planners / economists
 - Add 'satellite accounts' to GDP, etc
 - Indexes of resource use, environmental damage, social welfare, etc.
- End up creating 'GDP indices'
- No surprise: less GDP growth given the amount of depletion, emissions, etc.
- See Cobb and Daly "Index of Sustainable Welfare" (ISEW)
- Like finding 'full cost' of economic output

Genuine Progress Indicator

 Includes adjustments for crime, volunteer work, resource depletion, income distribution, pollution, long-term environmental, etc.

Application of Valuation: Hybrid Electric Vehicles (HEV)

- ICE and Battery Powered
- Emissions and Fuel Economy Benefits
- Toyota Prius Performance not comparable to current internal combustion engine (ICE) vehicle
- Evaluate benefits of improved performance Prius and Corolla ICE- Consumer and Social Perspectives

Hybrid Electric Vehicles

- Compare lifetime private and social costs of Prius and Corolla
- Private Costs
 - Vehicle purchase price
 - Maint. cost (battery replacement)
 - Fuel cost
- Social Costs
 - Costs of air pollutants and GHG emitted

Vehicle	Car Class	Test	НС	СО	NO _x	CO_2	Fuel	Acceln.
		Wt^1 .	(g/mi)	(g/mi)	(g/mi)	(g/mi)	Economy	0-60 mph
		(lb.)					(mpg)	(sec)
Suzuki	Sub-	2125	0.04^{2}	0.3	0.04	158	54.5	15.3 ⁶
Metro	compact		0.08^{3}	0.34	0.11	207		
Toyota	Sub-	3000	0.06	0.5	0.05	177	48.6	14.2
Prius	compact		0.1	0.55	0.13	232		
Perf-	Sub-		0.06^{5}	0.5	0.05	210	42.7^4	10.5
Prius ⁴	compact		<i>0.1</i>	0.56	0.14	273		
Toyota	Compact	2750	0.18	1.2	0.12	236	36.5	9.7 ⁸
Corolla			0.23	1.27	0.22	309		
Corolla	Compact		<i>0.18</i> ⁵	1.2	0.12	254	33.8	9. 7 ⁷
-AT			0.24	1.27	0.23	333		
AHEV	Sub-		0.06	0.5	0.05	121	72.9	14.2
	compact		0.09	0.53	0.10	158		

Table 1. Vehicle Attributes and Exhaust Emissions

Attractiveness of Advanced Vehicles

	Corolla-AT	Perf. Prius	Adv. Car
Purchase Price plus	\$16,210	\$22,100	?
Battery Replacement			
Fuel	\$ 5,520	\$ 4,370	?
Consumer Total	\$21,730	\$26,470	< \$21,730?
Air Pollutants*	\$ 260	\$ 120	?
Carbon Dioxide*	\$ 640	\$ 520	?
Social Total	\$22,630	\$27,110	< \$22,630?

* Includes vehicle and upstream emissions Vehicle Lifetime: 200,000 km, 12 years Gasoline Price: \$1.50/gallon Air Pollutants: \$1400/ton HC, \$1050/ton, NOx, \$1060/ton CO Carbon Dioxide: \$14/ton Assumes zero discount rate

Table 3. Gasoline Prices and Social Valuations of Emissions and Carbon Dioxide that Make a Hybrid Electric Vehicle and Corolla Comparable¹

Vehicle	Perf- Prius	Prius	$AHEV^2$			
\$4,000 More Expensive Than Corolla-AT ³						
Gasoline Price ⁴ :	9.31	6.28	3.47			
\$/gal						
Emissions	46	42	31			
multiplier ⁵						
CO_2^6 : \$/ton	586	320	141			
\$2,000 More Expensive Than Corolla-AT						
Gasoline Price:	5.68	3.80	2.06			
\$/gal						
Emissions	25	20	9			
multiplier						
CO ₂ : \$/ton	321	161	50			
No More Expensive Than Corolla-AT						
Gasoline Price:	2.06	1.32	0.65			
\$/gal						
Emissions	4	-	-			
multiplier						
CO_2 : \$/ton	55	2	-			
Breakeven Vehicle Price Difference ⁷						
Price: \$	-306	148	1203			
No Battery Repl.:\$	1174	1628	2683			

Design

Hybrid Electric Vehicles

- Current Prius or Performance Prius is more costly than the fuel savings, air pollutant and CO₂ emissions benefits would justify
- To be attractive economically, an HEV will have to offer features that cannot be offered by a conventional ICE

Recommendations

- Learn about your cost acctg system!
 - Be able to get and read reports
 - Or make friends in accounting dept.
- Learn what data is there and how you can use it to improve EH&S systems
 - As you'll see later, linking cost and environmental data is not easy, but it has large rewards.

Conclusions

- Although controversial..
 - Valuation/weighting methods are helpful in collapsing information into meaningful comparisons
- The types of comparisons possible are large with such methods
- The number of interesting policy problems to address is large

